Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neuropsychopharmacol ; 26(4): 294-306, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879414

RESUMO

BACKGROUND: Electroconvulsive seizure therapy is often used in both treatment-resistant and geriatric depression. However, preclinical studies identifying targets of chronic electroconvulsive seizure (ECS) are predominantly focused on animal models in young adulthood. Given that putative transcriptional, neurogenic, and neuroplastic mechanisms implicated in the behavioral effects of chronic ECS themselves exhibit age-dependent modulation, it remains unknown whether the molecular and cellular targets of chronic ECS vary with age. METHODS: We subjected young adult (2-3 months) and middle-aged (12-13 months), male Sprague Dawley rats to sham or chronic ECS and assessed for despair-like behavior, hippocampal gene expression, hippocampal neurogenesis, and neuroplastic changes in the extracellular matrix, reelin, and perineuronal net numbers. RESULTS: Chronic ECS reduced despair-like behavior at both ages, accompanied by overlapping and unique changes in activity-dependent and trophic factor gene expression. Although chronic ECS had a similar impact on quiescent neural progenitor numbers at both ages, the eventual increase in hippocampal progenitor proliferation was substantially higher in young adulthood. We noted a decline in reelin⁺ cell numbers following chronic ECS only in young adulthood. In contrast, an age-invariant, robust dissolution of perineuronal net numbers that encapsulate parvalbumin⁺ neurons in the hippocampus were observed following chronic ECS. CONCLUSION: Our findings indicate that age is a key variable in determining the nature of chronic ECS-evoked molecular and cellular changes in the hippocampus. This raises the intriguing possibility that chronic ECS may recruit distinct, as well as overlapping, mechanisms to drive antidepressant-like behavioral changes in an age-dependent manner.


Assuntos
Eletroconvulsoterapia , Hipocampo , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Eletrochoque , Convulsões/metabolismo , Expressão Gênica
2.
J Biosci ; 472022.
Artigo em Inglês | MEDLINE | ID: mdl-36476774

RESUMO

Animal models of early adversity or neurodevelopmental disorders are associated with altered parvalbumin (PV)-positive inhibitory interneuron number and function, correlated with a dysregulated excitation-inhibition (E/I) balance that is implicated in the pathophysiology of neuropsychiatric disorders. We sought to address whether altering neuronal activity of PV-positive interneurons during the postnatal developmental window influences the emergence of anxio-depressive behaviors in adulthood, which are known to be perturbed in models of early adversity and neurodevelopmental disorders. We used a PV-Cre::hM3Dq-DREADD bigenic mouse line that selectively expresses the hM3Dq-DREADD receptor in PV-positive interneurons, and chemogenetically enhanced Gq signaling in PV-positive interneurons during the postnatal window via administration of the DREADD agonist, clozapine-N-oxide. Immunofluorescence studies have indicated the selective expression of hM3Dq-DREADD in PV-positive interneurons in limbic circuits, and have revealed a reduction in expression of the neuronal activity marker, c-Fos, in these circuits, following chemogenetic hM3Dq-DREADD-mediated activation of PV-positive inhibitory interneurons. We noted no change in either growth or sensorimotor reflex milestones following chronic hM3Dq-DREADD-mediated chemogenetic activation of PV-positive inhibitory interneurons in postnatal life. Adult male and female PV-Cre::hM3DqDREADD bigenic mice with a history of postnatal chemogenetic activation of PV-positive interneurons exhibited a reduction in anxiety and despair-like behavior in adulthood, which was noted in both a behavioral task- and sex-dependent manner. These results indicate that altering neuronal activity within PV-positive interneurons during the critical postnatal developmental window can shape the emergence of anxio-depressive behaviors in adulthood, with sex as a variable playing a key role in determining behavioral outcomes.


Assuntos
Parvalbuminas , Transdução de Sinais , Feminino , Masculino , Animais , Camundongos , Parvalbuminas/genética
3.
IBRO Neurosci Rep ; 13: 420-425, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36386600

RESUMO

Norepinephrine (NE), and specific adrenoceptors, have been reported to influence distinct aspects of adult hippocampal neurogenesis, including latent stem cell activation, progenitor proliferation, and differentiation. These findings are predominantly based on the use of pharmacological approaches in both in vitro and in vivo systems. Here, we sought to assess the consequences of genetic ablation of NE on adult hippocampal neurogenesis, by examining dopamine ß hydroxylase knockout (Dbh -/-) mice, which lack NE from birth. We find that Dbh -/- mice exhibit no difference in adult hippocampal progenitor proliferation and survival. Further, the number of immature newborn neurons, labeled using stage-specific developmental markers within the hippocampal neurogenic niche, was also unaltered in Dbh -/- mice. In contrast, the noradrenergic neurotoxin DSP-4, which had previously been shown to reduce adult hippocampal neurogenesis in rats, also resulted in a decline in hippocampal progenitor proliferation in C57/Bl6N mice. These findings indicate that pharmacological lesioning of noradrenergic afferents in adulthood, but not the complete genetic loss of NE from birth, impairs adult hippocampal neurogenesis in mice.

4.
Neurosci Lett ; 789: 136871, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36108934

RESUMO

Stress perception and response vary across sexes and may contribute to the sex differences in susceptibility to psychopathology. Stress also engages the immune system and baseline immune system markers are known to be sexually dimorphic. Here, we investigated if the neuroimmune consequences following a single episode of acute immobilization stress (AIS) are sexually dimorphic in male and female Sprague-Dawley rats. We analyzed immune parameters in the periphery, and markers of neuroinflammation in the hippocampus, a key target of stress effects in the brain. We observed sexual dimorphism in the pattern of regulation of peripheral cytokines following stress, with males showing a significant increase in the levels of specific cytokines compared to females. Hippocampal cytokine and neuroinflammation-associated gene expression level analysis did not reveal any sexually dimorphic effects of AIS. However, we noted lower baseline expression levels for specific cytokines and many of the genes analyzed in the hippocampus of control females compared to control males. Finally, we assessed the levels of components of the NLRP3 inflammasome in the hippocampus and observed increased NLRP3 protein levels at baseline in females. We further noted that while males showed an increase in NLRP3 levels following AIS, females failed to show a similar change. Together, our results highlight a sexual dimorphism in neuroimmune consequences following AIS, both in the periphery and within the hippocampus, with males displaying robust proinflammatory changes and similar changes not observed in females. Our study underlines the importance of investigating the effect of sex on neuroimmune consequences following acute stress.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Citocinas/metabolismo , Feminino , Hipocampo/metabolismo , Inflamassomos/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
5.
Front Mol Neurosci ; 15: 822917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392273

RESUMO

Early adversity is an important risk factor that influences brain aging. Diverse animal models of early adversity, including gestational stress and postnatal paradigms disrupting dam-pup interactions evoke not only persistent neuroendocrine dysfunction and anxio-depressive behaviors, but also perturb the trajectory of healthy brain aging. The process of brain aging is thought to involve hallmark features such as mitochondrial dysfunction and oxidative stress, evoking impairments in neuronal bioenergetics. Furthermore, brain aging is associated with disrupted proteostasis, progressively defective epigenetic and DNA repair mechanisms, the build-up of neuroinflammatory states, thus cumulatively driving cellular senescence, neuronal and cognitive decline. Early adversity is hypothesized to evoke an "allostatic load" via an influence on several of the key physiological processes that define the trajectory of healthy brain aging. In this review we discuss the evidence that animal models of early adversity impinge on fundamental mechanisms of brain aging, setting up a substratum that can accelerate and compromise the time-line and nature of brain aging, and increase risk for aging-associated neuropathologies.

6.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35115382

RESUMO

G-protein-coupled receptors (GPCRs) coupled to Gi signaling, in particular downstream of monoaminergic neurotransmission, are posited to play a key role during developmental epochs (postnatal and juvenile) in shaping the emergence of adult anxiodepressive behaviors and sensorimotor gating. To address the role of Gi signaling in these developmental windows, we used a CaMKIIα-tTA::TRE hM4Di bigenic mouse line to express the hM4Di-DREADD (designer receptor exclusively activated by designer drugs) in forebrain excitatory neurons and enhanced Gi signaling via chronic administration of the DREADD agonist, clozapine-N-oxide (CNO) in the postnatal window (postnatal days 2-14) or the juvenile window (postnatal days 28-40). We confirmed that the expression of the HA-tagged hM4Di-DREADD was restricted to CaMKIIα-positive neurons in the forebrain, and that the administration of CNO in postnatal or juvenile windows evoked inhibition in forebrain circuits of the hippocampus and cortex, as indicated by a decline in expression of the neuronal activity marker c-Fos. hM4Di-DREADD-mediated inhibition of CaMKIIα-positive forebrain excitatory neurons in postnatal or juvenile life did not impact the weight profile of mouse pups, and also did not influence the normal ontogeny of sensory reflexes. Further, postnatal or juvenile hM4Di-DREADD-mediated inhibition of CaMKIIα-positive forebrain excitatory neurons did not alter anxiety- or despair-like behaviors in adulthood and did not impact sensorimotor gating. Collectively, these results indicate that chemogenetic induction of Gi signaling in CaMKIIα-positive forebrain excitatory neurons in postnatal and juvenile temporal windows does not appear to impinge on the programming of anxiodepressive behaviors in adulthood.


Assuntos
Clozapina , Neurônios , Afeto , Animais , Clozapina/metabolismo , Clozapina/farmacologia , Hipocampo/fisiologia , Camundongos , Neurônios/fisiologia , Prosencéfalo , Transmissão Sináptica
7.
Vitam Horm ; 118: 1-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35180924

RESUMO

Adult hippocampal neurogenesis is sensitive to perturbations in thyroid hormone signaling, with evidence supporting a key role for thyroid hormone and thyroid hormone receptors (TRs) in the regulation of postmitotic progenitor survival and neuronal differentiation. In this book chapter we summarize the current understanding of the effects of thyroid hormone signaling on adult hippocampal progenitor development, and also critically address the role of TRs in regulation of distinct aspects of stage-specific hippocampal progenitor progression. We highlight actions of thyroid hormone on thyroid hormone responsive target genes, and the implications for hippocampal progenitor regulation. Given the influence of thyroid hormone on both mitochondrial and lipid metabolism, we discuss a putative role for regulation of metabolism in the effects of thyroid hormone on adult hippocampal neurogenesis. Finally, we highlight specific ideas that require detailed experimental investigation, and the need for future studies to obtain a deeper mechanistic insight into the influence of thyroid hormone and TRs in the developmental progression of adult hippocampal progenitors.


Assuntos
Hipocampo , Neurogênese , Humanos , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/fisiologia
10.
Biol Psychiatry ; 90(2): 109-117, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34052037

RESUMO

The neurocircuitry that contributes to the pathophysiology of posttraumatic stress disorder and major depressive disorder, psychiatric conditions that exhibit a high degree of comorbidity, likely involves both overlapping and unique structural and functional changes within multiple limbic brain regions. In this review, we discuss neurobiological alterations that are associated with posttraumatic stress disorder and major depressive disorder and highlight both similarities and differences that may exist between these disorders to argue for the existence of a shared neurobiology. We highlight the key contributions based on preclinical studies, emerging from the late Professor Ronald Duman's research, that have shaped our understanding of the neurocircuitry that contributes to both the etiopathology and treatment of major depressive disorder and posttraumatic stress disorder.


Assuntos
Transtorno Depressivo Maior , Transtornos de Estresse Pós-Traumáticos , Encéfalo , Depressão , Humanos
11.
12.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622703

RESUMO

Elevation of serotonin via postnatal fluoxetine (PNFlx) treatment during critical temporal windows is hypothesized to perturb the development of limbic circuits thus establishing a substratum for persistent disruption of mood-related behavior. We examined the impact of PNFlx treatment on the formation and maintenance of perineuronal nets (PNNs), extracellular matrix (ECM) structures that deposit primarily around inhibitory interneurons, and mark the closure of critical period plasticity. PNFlx treatment evoked a significant decline in PNN number, with a robust reduction in PNNs deposited around parvalbumin (PV) interneurons, within the CA1 and CA3 hippocampal subfields at postnatal day (P)21 in Sprague Dawley rat pups. While the reduction in CA1 subfield PNN number was still observed in adulthood, we observed no change in colocalization of PV-positive interneurons with PNNs in the hippocampi of adult PNFlx animals. PNFlx treatment did not alter hippocampal PV, calretinin (CalR), or Reelin-positive neuron numbers in PNFlx animals at P21 or in adulthood. We did observe a small, but significant increase in somatostatin (SST)-positive interneurons in the DG subfield of PNFlx-treated animals in adulthood. This was accompanied by altered GABA-A receptor subunit composition, increased dendritic complexity of apical dendrites of CA1 pyramidal neurons, and enhanced neuronal activation revealed by increased c-Fos-positive cell numbers within hippocampi of PNFlx-treated animals in adulthood. These results indicate that PNFlx treatment alters the formation of PNNs within the hippocampus, raising the possibility of a disruption of excitation-inhibition (E/I) balance within this key limbic brain region.


Assuntos
Fluoxetina , Parvalbuminas , Animais , Matriz Extracelular/metabolismo , Fluoxetina/farmacologia , Hipocampo/metabolismo , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Reelina
13.
FEBS J ; 288(8): 2602-2621, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33523596

RESUMO

Early adversity is a key risk factor for the development of several psychiatric disorders, including anxiety and depression. During early life, neurocircuits that regulate emotionality undergo substantial structural remodeling and functional maturation, and are thus particularly susceptible to modification by environmental experience. Preclinical evidence indicates that early stress enhances adult anxio-depressive behaviors. A commonality noted across diverse early stress models is life-long alterations in neuroendocrine stress responses and monoaminergic neurotransmission in key limbic circuits. Dysregulation of G protein-coupled receptor (GPCR) signaling is noted across multiple early stress models and is hypothesized to be an important player in the programming of aberrant emotionality. This raises the possibility that disruption of GPCR signaling in key limbic regions during critical temporal windows could establish a substrate for enhanced risk of adult psychopathology. Here, we review literature, predominantly from preclinical models, which supports the building hypothesis that a disruption of GPCR signaling could play a central role in programming persistent molecular, cellular, functional, and behavioral changes as a consequence of early adversity.


Assuntos
Ansiedade/genética , Transtornos Mentais/genética , Receptores Acoplados a Proteínas G/genética , Estresse Psicológico/genética , Animais , Ansiedade/patologia , Humanos , Transtornos Mentais/patologia , Serotonina/genética , Transmissão Sináptica/genética
14.
Chemistry ; 27(27): 7533-7541, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33502812

RESUMO

Serotonin, an important signaling molecule in humans, has an unexpectedly high lipid membrane affinity. The significance of this finding has evoked considerable speculation. Here we show that membrane binding by serotonin can directly modulate membrane properties and cellular function, providing an activity pathway completely independent of serotonin receptors. Atomic force microscopy shows that serotonin makes artificial lipid bilayers softer, and induces nucleation of liquid disordered domains inside the raft-like liquid-ordered domains. Solid-state NMR spectroscopy corroborates this data at the atomic level, revealing a homogeneous decrease in the order parameter of the lipid chains in the presence of serotonin. In the RN46A immortalized serotonergic neuronal cell line, extracellular serotonin enhances transferrin receptor endocytosis, even in the presence of broad-spectrum serotonin receptor and transporter inhibitors. Similarly, it increases the membrane binding and internalization of oligomeric peptides. Our results uncover a mode of serotonin-membrane interaction that can potentiate key cellular processes in a receptor-independent fashion.


Assuntos
Proteínas de Transporte , Serotonina , Humanos , Bicamadas Lipídicas , Proteínas de Membrana Transportadoras , Microscopia de Força Atômica
15.
Front Mol Neurosci ; 14: 790213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002622

RESUMO

Psychedelic compounds that target the 5-HT2A receptor are reported to evoke psychoplastogenic effects, including enhanced dendritic arborization and synaptogenesis. Transcriptional regulation of neuronal plasticity-associated genes is implicated in the cytoarchitectural effects of serotonergic psychedelics, however, the transcription factors that drive this regulation are poorly elucidated. Here, we addressed the contribution of the transcription factor cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) in the regulation of neuronal plasticity-associated genes by the hallucinogenic 5-HT2A receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI). In vitro studies with rat cortical neurons indicated that DOI enhances the phosphorylation of CREB (pCREB) through mitogen-activated protein (MAP) kinase and calcium/calmodulin dependent kinase II (CaMKII) pathways, with both cascades contributing to the DOI-evoked upregulation of Arc, Bdnf1, Cebpb, and Egr2 expression, whilst the upregulation of Egr1 and cFos mRNA involved the MAP kinase and CaMKII pathway respectively. We observed a robust DOI-evoked increase in the expression of several neuronal plasticity-associated genes in the rat neocortex in vivo. This DOI-evoked upregulation of neuronal plasticity-associated genes was completely blocked by the 5-HT2A receptor antagonist MDL100,907 in vitro and was also abrogated in the neocortex of 5-HT2A receptor deficient mice. Further, 5-HT2A receptor stimulation enhanced pCREB enrichment at putative cAMP response element (CRE) binding sites in the Arc, Bdnf1, Cebpb, cFos, but not Egr1 and Egr2, promoters in the rodent neocortex. The DOI-mediated transcriptional induction of Arc, cFos and Cebpb was significantly attenuated in the neocortex of CREB deficient/knockout (CREBαδ KO) mice. Collectively, these results indicate that the hallucinogenic 5-HT2A receptor agonist DOI leads to a rapid transcriptional upregulation of several neuronal plasticity-associated genes, with a subset of them exhibiting a CREB-dependent regulation. Our findings raise the intriguing possibility that similar to slow-acting classical antidepressants, rapid-action serotonergic psychedelics that target the 5-HT2A receptor may also recruit the transcription factor CREB to enhance the expression of neuronal plasticity-associated genes in the neocortex, which could in turn contribute to the rapid psychoplastogenic changes evoked by these compounds.

17.
Elife ; 92020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955432

RESUMO

Early adversity is a risk factor for the development of adult psychopathology. Common across multiple rodent models of early adversity is increased signaling via forebrain Gq-coupled neurotransmitter receptors. We addressed whether enhanced Gq-mediated signaling in forebrain excitatory neurons during postnatal life can evoke persistent mood-related behavioral changes. Excitatory hM3Dq DREADD-mediated chemogenetic activation of forebrain excitatory neurons during postnatal life (P2-14), but not in juvenile or adult windows, increased anxiety-, despair-, and schizophrenia-like behavior in adulthood. This was accompanied by an enhanced metabolic rate of cortical and hippocampal glutamatergic and GABAergic neurons. Furthermore, we observed reduced activity and plasticity-associated marker expression, and perturbed excitatory/inhibitory currents in the hippocampus. These results indicate that Gq-signaling-mediated activation of forebrain excitatory neurons during the critical postnatal window is sufficient to program altered mood-related behavior, as well as functional changes in forebrain glutamate and GABA systems, recapitulating aspects of the consequences of early adversity.


Stress and adversity in early childhood can have long-lasting effects, predisposing people to mental illness and mood disorders in adult life. The weeks immediately before and after birth are critical for establishing key networks of neurons in the brain. Therefore, any disruption to these neural circuits during this time can be detrimental to emotional development. However, it is still unclear which cellular mechanisms cause these lasting changes in behavior. Studies in animals suggest that these long-term effects could result from abnormalities in a few signaling pathways in the brain. For example, it has been proposed that overstimulating the cells that activate circuits in the forebrain ­ also known as excitatory neurons ­ may contribute to the behavioral changes that persist into adulthood. To test this theory, Pati et al. used genetic engineering to modulate a signaling pathway in male mice, which is known to stimulate excitatory neurons in the forebrain. The experiments showed that prolonged activation of excitatory neurons in the first two weeks after birth resulted in anxious and despair-like behaviors as the animals aged. The mice also displayed discrepancies in how they responded to certain external sensory information, which is a hallmark of schizophrenia-like behavior. However, engineering the same changes in adolescent and adult mice had no effect on their mood-related behaviors. This animal study reinforces just how critical the first few weeks of life are for optimal brain development. It provides an insight into a possible mechanism of how disruption during this time could alter emotional behavior. The findings are also relevant to psychiatrists interested in the underlying causes of mental illness after early childhood adversity.


Assuntos
Afeto/fisiologia , Comportamento Animal/fisiologia , Neurônios/fisiologia , Prosencéfalo/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/fisiologia , Ansiedade/etiologia , Feminino , Neurônios GABAérgicos/fisiologia , Hipocampo/fisiologia , Masculino , Camundongos
18.
J Neuroimmunol ; 348: 577363, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919145

RESUMO

Children residing in high malaria transmission regions are particularly susceptible to malaria. This early-life window is also a critical period for development and maturation of the nervous system, and inflammatory insults during this period may evoke a persistent increase in vulnerability for psychopathology. We employed a two-hit model of juvenile mild malaria and a two-week chronic unpredictable mild stress (CUMS) regime, commencing 60 days post-parasite clearance, to assess whether a history of juvenile infection predisposed the mice towards mood-related behavioral alterations and neurocognitive deficits. We showed that adult mice with a history of juvenile malaria (A-H/JMAL) exhibited heightened CUMS-associated anxiety-like behavior, with no observable change in cognitive behavior. In contrast, mice with a history of adult malaria did not exhibit such enhanced stress vulnerability. At baseline, A-H/JMAL mice showed increased activated microglia within the hippocampal dentate gyrus subfield. This was accompanied by a decrease in proliferating neuronal progenitors, with total number of immature hippocampal neurons unaltered. This neuroinflammatory and neurogenic decline was further exacerbated by CUMS. At day-14 post-CUMS, hippocampi of A-H/JMAL mice showed significantly higher microglial activation, and a concomitant decrease in progenitor proliferation and number of immature neurons. Taken together, these results suggest that a history of juvenile mild malaria leaves a neuroinflammatory mark within the hippocampal niche, and this may contribute to a heightened stress response in adulthood. Our findings lend credence to the idea that the burden of malaria in early-life results in sustained CNS changes that could contribute to increased vulnerability to adult-onset neuronal insults.


Assuntos
Ansiedade/patologia , Hipocampo/patologia , Malária/patologia , Neurogênese/fisiologia , Estresse Psicológico/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium chabaudi
19.
Biochem Biophys Res Commun ; 531(4): 609-614, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32814630

RESUMO

The 5-HT2A receptor is a target for hallucinogenic and non-hallucinogenic ligands that evoke unique behavioral, electrophysiological and molecular consequences. Here, we explored the differential effects of distinct 5-HT2A receptor ligands on signaling pathways downstream to the 5-HT2A receptor. The hallucinogenic 5-HT2A receptor agonist DOI evoked an enhanced signaling response compared to the non-hallucinogenic 5-HT2A receptor agonist lisuride in human/rat 5-HT2AR-EGFP receptor expressing HEK293 cell lines and cortical neuronal cultures. We noted higher levels of phospho-PLC, pPKC, pERK, pCaMKII, pCREB, as well as higher levels of IP3 and DAG production following 5-HT2A receptor stimulation with DOI. Our study reveals distinct signaling signatures, differing in magnitude and kinetics at the 5-HT2A receptor in response to DOI versus lisuride.


Assuntos
Anfetaminas/farmacologia , Lisurida/farmacologia , Neurônios/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Alucinógenos/farmacologia , Humanos , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/genética , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Mol Psychiatry ; 25(6): 1159-1174, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31439936

RESUMO

Exposure to stress during early life (infancy/childhood) has long-term effects on the structure and function of the prefrontal cortex (PFC), and increases the risk for adult depression and anxiety disorders. However, little is known about the molecular and cellular mechanisms of these effects. Here, we focused on changes induced by chronic maternal separation during the first 2 weeks of postnatal life. Unbiased mRNA expression profiling in the medial PFC (mPFC) of maternally separated (MS) pups identified an increased expression of myelin-related genes and a decreased expression of immediate early genes. Oligodendrocyte lineage markers and birthdating experiments indicated a precocious oligodendrocyte differentiation in the mPFC at P15, leading to a depletion of the oligodendrocyte progenitor pool in MS adults. We tested the role of neuronal activity in oligodendrogenesis, using designed receptors exclusively activated by designed drugs (DREADDs) techniques. hM4Di or hM3Dq constructs were transfected into mPFC neurons using fast-acting AAV8 viruses. Reduction of mPFC neuron excitability during the first 2 postnatal weeks caused a premature differentiation of oligodendrocytes similar to the MS pups, while chemogenetic activation normalised it in the MS animals. Bidirectional manipulation of neuron excitability in the mPFC during the P2-P14 period had long lasting effects on adult emotional behaviours and on temporal object recognition: hM4Di mimicked MS effects, while hM3Dq prevented the pro-depressive effects and short-term memory impairment of MS. Thus, our results identify neuronal activity as a critical target of early-life stress and demonstrate its function in controlling both postnatal oligodendrogenesis and adult mPFC-related behaviours.


Assuntos
Privação Materna , Oligodendroglia/patologia , Estresse Psicológico , Animais , Comportamento Animal , Proliferação de Células , Emoções , Feminino , Masculino , Camundongos , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...